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1. Introduction

Type IIA little string theory [1] describes the decoupling limit of NS5-branes in type IIA

string theory in the limit where gs is taken to zero at fixed α′. The remaining degrees of

freedom are believed to be described by a non-gravitational six-dimensional theory. The

infrared limit of this theory is known to be the (0, 2) conformal field theory, but in general

the theory is non-local (see [2] for a review).

Little string theory has a DLCQ formulation [3] as well as a deconstruction descrip-

tion [4], however it has mainly been analyzed through its gravity dual. This gravity dual

is the near-horizon limit of the NS5-brane solution of type IIA string theory. For large r,

where the IIA picture is valid, this is given by

ds2 = N5α
′(−dt2 + d~x2

5 + dr2 + dΩ2
3)

eφ = gse
−r,

(1.1)

with N5 units of H flux through the S3. This description is also difficult to work with,

however, since the linear dilaton sends the theory to strong coupling in the infrared region

of the geometry.

Recently, Lin and Maldacena [5] found a supergravity solution in which the flat five-

dimensional part of the geometry along the worldvolume of the NS5-branes is replaced with

an S5. For large radius this takes the form

ds2 = N5α
′[2r(−dt2 + dΩ2

5) + dr2 + dΩ2
3]

eΦ = gse
−r.

(1.2)

This solution contains a linear dilaton and an S3 with N5 units of H-flux, implying we can

think of this as describing NS5-branes on S5. Interestingly, this supergravity solution has

some features that make it more tractable than the solution corresponding to flat NS5-
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Figure 1: The three generic types of electrostatics configurations. The isolated set of disks in

(a) is a configuration dual to a vacuum of SYM theory on R × S2 with sixteen supercharges. The

periodic configuration in (b) is dual to a vacuum of N = 4 SYM theory on R × S3/Zk. The set of

disks above an infinite conducting plane in (c) is dual to a vacuum of the PWMM.

branes. The maximum values of the dilaton and the curvature are both tunable so that

the supergravity description is valid everywhere.

This solution is one of a family of solutions of type IIA supergravity preserving SU(2|4)
symmetry constructed by Lin and Maldacena [5]. Each supergravity solution is constructed

from the electrostatic potential of an axisymmetric arrangement of charged conducting

disks in three spatial dimensions. The above NS5-brane solution is obtained from the

electrostatic potential between two infinitely large disks.

According to the proposal in [5], the supergravity solutions arising from configurations

with a finite number of disks correspond to the (classically degenerate) vacua of super-

Yang-Mills theory on R × S2 with sixteen supercharges. Configurations with an infinite

number of disks, arranged in a periodic fashion, correspond to the vacua of N = 4 super-

Yang-Mills on R×S3/Zk. Finally, configurations with one infinitely large disk, and a finite

number of disks above it, correspond to the vacua of the plane wave matrix model (see

figure 1). The relations among these field theories have been discussed in [6 – 8].

The supergravity picture suggests an interesting connection between these three gauge

theories with SU(2|4) symmetry and little string theory. Lin and Maldacena showed that

the supergravity solutions dual to the various vacua of these field theories generally contain

throats with non-contractible S3s permeated by H-flux, which can be associated with NS5-

brane degrees of freedom. In the limit that the throats containing the non-contractible S3s

with H-flux become infinitely large, the NS5-brane degrees of freedom will decouple. The

remaining geometry should be the above Lin-Maldacena NS5-brane solution dual to little

string theory on S5 [5]. In the language of the dual theories, this suggests that little string

theory may be obtained from suitable limits of the three gauge theories.
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In [9] the supergravity dual of a simple vacuum of the plane-wave model was considered,

and the required limit that gives the Lin-Maldacena solution was explicitly determined. By

matching the parameters of the plane wave matrix model with those of the electrostatics

configuration, it was proposed that little string theory on S5 may be obtained from a

double-scaling limit of the plane wave matrix model.

In this paper, we extend the work of [9] and perform a similar analysis for the SYM

theory on R×S2 and N = 4 SYM theory on R×S3/Zk. We solve the electrostatics problems

corresponding to specific simple vacua of these field theories and determine the scaling

of parameters in the supergravity solutions that is required to obtain the Lin-Maldacena

solution for NS5-branes on S5. By considering the matching between the parameters in the

field theories and those in the corresponding electrostatics problems, we thereby determine

the precise scaling of the gauge theory parameters that is required to obtain little string

theory on S5. The proposed prescriptions are found to be double-scaling limits, similar to

the one found in the case of the plane wave matrix model [9]. Whereas in the plane wave

matrix model case it was found that the ’t Hooft coupling must be scaled like ln4 N [9], we

will show below that for the SYM theories on R×S2 and R×S3/Zk the ’t Hooft coupling

must be scaled like ln3 N and ln2 N respectively.

2. The gauge theories and their dual supergravity solutions

In [5], Lin and Maldacena found a class of solutions of type IIA supergravity with SU(2|4)
symmetry depending on one single function V . This function V solves the three dimensional

Laplace equation and satisfies the same boundary conditions as the electrostatic potential of

an axisymmetric arrangement of charged conducting disks in a background electric field. By

specifying the positions and sizes of the conducting disks, the charges on the disks, and the

asymptotic form of V at infinity, V is determined uniquely. Each different specification of

these parameters leads to a different V , however not all such choices give rise to physically

acceptable supergravity solutions. Flux quantization in the supergravity solution tells

us that the charges on the disks and the spacing between disks are quantized. Positive-

definiteness of various metric components in the supergravity solutions imposes constraints

on the form of the asymptotic potential. Finally, the regularity of the supergravity solutions

tells us that the surface charge density on the disks must vanish at the edge of the disks.

This final condition suggests that for a fixed asymptotic potential, the positions, charges,

and sizes of the disks cannot be independently specified. For example, the sizes of the disks

may be fixed once the other parameters are freely specified. For an extensive discussion of

the general properties of these supergravity solutions see [5].

Here we are interested in the supergravity solutions dual to the vacua of the SYM

theory on R × S2 and N = 4 SYM theory on R × S3/Zk. For all vacua of these two field

theories, Lin and Maldacena determined the asymptotic form of V to be W0(r
2 − 2z2),

where W0 > 0. The choice of vacuum is then given by specifying the charges, positions,

and sizes of the disks. Let us review in some detail the connection between these parameters

for the supergravity solutions and the parameters defining the field theory vacua.

– 3 –
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First consider N = 4 SYM on R × S3/Zk. The space S3/Zk can be described most

directly by choosing coordinates on the unit S3 such that the metric takes the form

dΩ2
3 =

1

4

[

(2dψ + cos θdφ)2 + dθ2 + sin2 θdφ2
]

, (2.1)

where the ψ coordinate is 2π periodic, and θ, φ are the usual coordinates for S2. Then the

orbifold S3/Zk is obtained by identifying ψ ∼ ψ + 2π/k. The vacua of this field theory are

given by the space of flat connections on S3/Zk. Up to gauge transformations, these are of

the form A = −diag(n1, n2, . . . , nN ) dψ, where e2πni/k are k-th roots of unity (clearly, to

label the vacua uniquely, we should restrict the values of the integers ni to be in some fixed

interval of length k). To understand intuitively how these vacua map to configurations

of disks in the electrostatics problem, consider the field theory as a theory of D3-branes

wrapped on an S3/Zk. Now apply a T-duality transformation in the isometry direction ψ.

The T-dual coordinate ψ̃ is periodic ψ̃ ∼ ψ̃+2πk, and the background gauge field is mapped

to an arrangement of D2-branes located at the positions ψ̃ = 2πn1, 2πn2, . . . , 2πnN (along

with their images under translations by integer multiplies of 2πk). Naturally, this suggests

that the dual supergravity solution is obtained by considering a periodic configuration of

disks with period proportional to k. The integers ni that specify the gauge theory vacuum

now determine the positions and charges of the disks within one period in the obvious

manner. Presumably, the sizes of the disks are then fixed by demanding regularity of the

supergravity solution. In rest of this paper, we will be interested in the simplest vacuum

state of the theory, given by the trivial gauge field ni = 0 for all i. In the normalization

conventions of Lin and Maldacena [5], the dual supergravity solution is generated by the

axisymmetric electrostatic potential V (r, z) for an arrangement of equal-sized disks at

z = (π/2)km for all integers m, where the charge on each disk is Q = (π2/8)N .

Now we consider the case of the SYM theory on R × S2. As discussed in [5], we can

think of this theory as N = 4 SYM on R×S3/Zk, in the limit where k → ∞ and g2
Y M3 → 0

while keeping g2
Y M3k fixed. Up to a numerical constant, the limiting value of g2

Y M3k is

the coupling g2
Y M2. If we start with a vacuum in the S3/Zk theory with background

gauge field A = −diag(n1, n2, . . . , nN )dψ and take k → ∞ with the integers ni fixed, then

we obtain a vacuum of the S2 theory with a vacuum expectation value for one of the

adjoint scalars Φ = −diag(n1, n2, . . . , nN ) and a background gauge field with associated

flux F = dA = Φ sin θdθdφ. All of the vacua of N = 4 SYM on R × S2 discussed in [5]

can be obtained in this way. This limit has a clear interpretation in the T-dual picture.

We start with a configuration of a finite number of D2-branes, repeated periodically by

translating the whole arrangement by integer multiples of 2πk. In the limit k → ∞, we

are left with only one copy of the configuration of D2-branes, the images being pushed

off to infinity. This naturally suggests that the dual supergravity solution is obtained by

considering a configuration of a finite number of disks. It is clear that the integers ni

determine the positions and charges of the disks in a manner analogous to the situation in

the R × S3/Zk theory. Again, the sizes of the disks are presumably fixed by demanding

regularity of the supergravity solutions. Note that the total sum of the charge on the disks

must equal the rank of the gauge group N . In the rest of this paper, we consider non-trivial
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vacua of the form Φ = (n, . . . , n,−n, · · · − n), where the integers n and −n each appear

N/2 times. In this case the dual supergravity solution is generated by the potential V (r, z)

corresponding to two equal-sized disks at z = ±(π/2)n with charge (π2/8)(N/2) on each

disk.

The final issue we need to discuss in this section is the normalization of the asymptotic

potential at infinity. For the SYM theory on R × S2, we can relate W0 to g2
Y M2 by using

the results in [9]. As discussed in [6, 9, 8] the SYM theory on R × S2 can be obtained as

a limit of the plane wave matrix model. This statement, together with the matching of

parameters in the plane wave matrix model discussed in [9], tell us that we must have

W0 =
h2

g2
Y M2

, (2.2)

where the positive constant h2 does not depend on the parameters N , g2
Y M2, which define

the gauge theory, and the eigenvalues of Φ, which label its vacua. For SYM theory on

R × S3/Zk, the above mentioned relation between this theory and the theory on R × S2

suggests that we make the identification

W0 =
h3

g2
Y M3k

, (2.3)

where h3 is a positive constant that does not depend on N, k, g2
Y M3 nor the integers that

label the vacua of the gauge theory.

3. Little string theory from SYM on R × S2

In this section, we consider in detail the supergravity solution corresponding to the electro-

statics problem for two identical disks of radius R located at z = ±d with charge Q on each

disk and a background potential W0(r
2 − 2z2). We wish to solve the electrostatics prob-

lem explicitly and determine the required scaling to obtain the Lin-Maldacena NS5-brane

solution.

The electrostatics problem for the case of two identical disks

Following the approach of [9], we first solve the electrostatics problem for the specific case

W0 = 1, R = 1, d = κ (the solution for the general case is then obtained by linear rescaling

of the coordinates and an overall rescaling of the potential). In this case the solution must

have the form

V (r, z) = (r2 − 2z2) + φκ(r, z), (3.1)

where φκ is an axisymmetric solution of the Laplace equation that vanishes at infinity. We

can expand φκ in terms of Bessel functions, and in the region between z = −d and z = d,

this expansion takes the form

φκ(r, z) =

∫ ∞

0

du

u
e−uκA(u)

(

e−uz + euz
)

J0(ru). (3.2)
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The potential on the two conducting disks, ∆, must be constant, and the electric field must

be continuous at all points not on the disks. Imposing these boundary conditions leads to

the following dual integral equations
∫ ∞

0

du

u
(1 + e−2κu)J0(ru)A(u) = ∆ − r2 0 < r < 1

∫ ∞

0
duJ0(ru)A(u) = 0 r > 1.

(3.3)

Following [10] we find that the solution of these integral equations can be given in terms of

the solution to a Fredholm integral equation of the second kind. The problem in this case

is very similar to the one considered in [9]. We have

A(u) =
2u

π

∫ 1

0
dt cos(ut)f(t), (3.4)

where f(t) satisfies the integral equation

f(t) +

∫ 1

−1
dxK(t, x)f(x) = ∆ − 2t2, (3.5)

and

K(t, x) =
1

π

2κ

4κ2 + (t − x)2
. (3.6)

For each value of ∆, the integral equation for f can be solved numerically. From the

resulting electrostatics potential, we can compute the surface charge density on the disks

σ(r) =
1

π2

[

f(1)√
1 − r2

−
∫ 1

r
dt

f ′(t)√
t2 − r2

]

. (3.7)

We can adjust the constant ∆ until we find the value ∆κ for which the corresponding

solution fκ satisfies fκ(1) = 0. Then the surface charge distribution σκ(r) for this solu-

tion vanishes at the edge of the disks. This final condition ensures the regularity of the

corresponding supergravity solutions. The total charge on each disk is given by

qκ =
2

π

∫ 1

0
dtfκ(t). (3.8)

Figure 3 shows a plot of qκ. For large κ the charge on each disk approaches 8/3π, and for

small κ the charge on each disk approaches 4/3π.

Finally the solution for the general case is obtained by rescaling. The electrostatics

potential is given by

V (r, z) = W0(r
2 − 2z2) + W0R

2φd/R(r/R, z/R), (3.9)

and the total charge on each disk is given by

Q = W0R
3qd/R. (3.10)

– 6 –
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z r

2d

R

E

Figure 2: The electrostatics problem for two identical disks. The dotted lines show the background

electric field configuration.

0.1

1

0.01 0.1 1 10 100

q κ

κ

4
3π
8
3π

Figure 3: The charge on each disk in the two-disk case. The solid and dashed lines show the

asymptotes for small and large κ respectively.

The limit of the Lin-Maldacena solution

Now we can determine the limit of this solution that gives the Lin-Maldacena solution for

NS5-branes on S5. In the region between the disks with 0 < r < R, our solution is an

axisymmetric solution of the Laplace equation that is regular at r = 0, so we can expand

– 7 –
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the solution in terms of modified Bessel functions

V (r, z) = Vz=d +
∞

∑

n=1

cn cos
(

(2n+1)πz
2d

)

I0

(

(2n+1)πr
2d

)

. (3.11)

The coefficients cn may be determined by using the potential at r = R. This gives

cn =
(

I0

(

(2n+1)πR
2d

))−1
2W0R

2

∫ 1

0
dz cos

(

(2n+1)πz
2

)

(

1 − 2(κz)2 − ∆κ + φκ(1, κz)
)

.

(3.12)

Using our numerical solution for φκ, the above integral can be performed numerically. In

the limit d ¿ R, this gives

c1 ≈ 1.56W0Rd
(

I0

(

πR
2d

))−1
. (3.13)

For large R/d this expression will be dominated by the Bessel function, which takes the

asymptotic form

(I0(z))−1 ∼
√

2πze−z

To preserve some non-trivial geometry, we must then scale W0 exponentially. Doing so

keeps c1 finite in the limit, but sends all the other coefficients to zero so that we recover

the Lin-Maldacena solution. More precisely, the Lin-Maldacena solution is obtained in the

limit

R → ∞ d fixed W0 ∼ R−1(Rd)−1/2e
πR
2d . (3.14)

The gauge theory interpretation

Having understood the correct scaling on the gravity side, we can translate this into a

condition on the gauge theory parameters. This amounts to

N → ∞ n fixed
1

g2
Y M2

λ1/2n1/2e−bλ1/3/n fixed, (3.15)

where the ’t Hooft coupling is λ = g2
Y M2N and b is a numerical coefficient related to the

constant appearing in (2.2) by b = (π/4)(3/h2)
1/2. We see that this is a large N limit,

where the ’t Hooft coupling is also scaled to infinity in a controlled way, and is very similar

to the limit that was found in the case of the PWMM in [9]. Note that the number of

NS5-branes is N5 = 2n.

4. Little string theory from N = 4 SYM on R × S3/Zk

Now we wish to perform a similar detailed analysis for the supergravity solution correspond-

ing to a periodic array of disks of radius R, where the disks are located at z = (2m + 1)d

(m is any integer), the charge on each disk is Q, and the background electric field is given

by the potential W0(r
2 − 2z2). Again we first solve the electrostatics problem, then find

the limit that recovers the NS5-brane solution of Lin and Maldacena.

– 8 –
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Figure 4: The electrostatics problem in the case a periodic array of disks. The dotted lines show

the background electric field configuration.

The electrostatics problem for a periodic array of disks

As in the previous section, we solve the electrostatics problem for the special case W0 = 1,

R = 1, d = κ, and obtain the solution for the general case by rescaling. In the absence of

the background potential the charge distribution on each disk will be the same. Adding

the background field will affect the charge distribution on each disk, but since the radial

part of the electric field it creates is identical on each disk, the charge distribution will

remain the same on each disk (see figure 4).

We can separate the potential into the sum of the background field and the part due

to the charge on the disks.

V = r2 − 2z2 + φκ(r, z), (4.1)

where φκ is periodic in z because the charge on each disk is identical. Formally, we can

expand φκ(r, z) in terms of Bessel functions as

φκ(r, z) =

∫ ∞

0

du

u
J0(ru)A(u)

∞
∑

n=−∞
e−u|(2n+1)κ−z|, (4.2)

and then try to determine the function A(u) by the imposing the boundary conditions. If

we take the value of the potential V to be ∆− 2κ2 on the disk at z = κ, then by imposing

the boundary conditions we obtain the following dual integral equations
∫ ∞

0

du

u

(

1 +
2e−2κu

1 − e−2κu

)

J0(ru)A(u) = ∆ − r2 0 < r < 1

∫ ∞

0
duJ0(ru)A(u) = 0 r > 1.

(4.3)
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However, direct attempts to solve these equations are met with divergences and various

difficulties. The reason is that these equations hold only formally, because the sum in

the expression for the potential (4.2) actually diverges. Physically, there is no divergence

because the electric field remains finite. This is the same type of situation encountered

for an infinite number of equally spaced point charges (or an infinite line of charge) on

the z-axis, which occurs simply because we try to express the potential as a sum of the

Coulomb potential for each charge. If we consider the potential difference between any two

points, there is no divergence, so we can regularize (4.2) by subtracting the potential at

any fixed reference point.

In this case, it is more convenient to consider the first integral equation (4.3) as a

condition on the electric field rather than the electric potential

∫ ∞

0
du

(

1 +
2e−2κu

1 − e−2κu

)

J1(ru)A(u) = 2r 0 < r < 1. (4.4)

The dual integral equations can then be solved by introducing a function satisfying a

Fredholm integral equation of the section kind,

fκ(x) +

∫ 1

0
duK(x, u)fκ(u) = − 8x√

π
, (4.5)

where

A(u) = − 1√
π

∫ 1

0
dξ sin(uξ)fκ(ξ). (4.6)

The kernel is given by

K(x, u) =
1

π

∫ ∞

0
dtk(t)(− cos(u + x)t + cos |u − x|t), (4.7)

where

k(u) =
2e−2κu

1 − e−2κu
. (4.8)

These integrals can be evaluated and the result is

K(x, u) =
1

2πκ

(

Ψ
(

1 +
i(x + u)

2κ

)

+ Ψ
(

1 − i(x + u)

2κ

)

− Ψ
(

1 +
i|x − u|

2κ

)

− Ψ
(

1 − i|x − u|
2κ

))

,

(4.9)

where Ψ is the digamma function. We solved (4.5) numerically using the Nyström method

(e.g. [11]). In contrast to the two disk case, since we considered the integral equation

corresponding to a condition on the electric field, there is no ∆ to adjust to ensure that the

surface charge density at the edge of the disk vanishes. In fact, for the form of the solution

given in (4.6), this condition is automatically satisfied as long as fκ is bounded. In terms

of fκ, the charge on each disk is

qκ = − 1√
κ

∫ 1

0
dt tfκ(t). (4.10)

– 10 –
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Figure 5: The charge on a disk as a function of the spacing between disks. The numerical result

is given by the dashed line. The solid line is the asymptotic behaviour for small κ, q ∼ 1.99κ. For

large κ the charge approaches 8

3π
.

Using our numerical solution for fκ we found that qκ approaches 8/3π for large κ and

approximately 1.99κ for small κ (see figure 4).

In principle, it is possible to determine the regularized potential completely from this

solution for fκ (however, the integrals involved are rather computationally expensive).

Then the potential for the case of general W0, R and d is obtained by a linear rescaling of

coordinates and an overall rescaling of the potential. Specifically, we note that the charge

on each disk in the general case is

Q = W0R
3qd/R. (4.11)

The limit of the Lin-Maldacena solution

To determine how the Fourier coefficients of the potential scale with κ, we found it was

most efficient to use the method of conformal mapping. Near the edge of the disks, when

their radial size is much larger than their separation, the electrostatics problem becomes

two-dimensional. By defining the complex coordinates ζ = (r − R) + iz, and w = 2∂ζV ,

any holomorphic function w(ζ) will be a solution of the Laplace equation. As described

in [5] the appropriate mapping in this case is

∂wζ = α tanh
(πw

β

)

(4.12)

and so

ζ =
αβ

π
log cosh

(

πw

β

)

, (4.13)
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where α, β are constants. Inverting this we find

w =
β

π
cosh−1

(

e
πζ
αβ

)

. (4.14)

If we fix the positions of the disks to be at ζ = i(2md), where m is an integer, we have

d = αβ/2. The vertical electric field at any disk should be −4W0=(ζ), so that β = 8W0d

and α = 1/4W0.

Expanding the potential in terms of modified Bessel functions, as in the two-disk case,

we find that

c1 ≈ 16W0d
2

π
(I0(

πR
2d ))−1(0.659). (4.15)

Again, therefore, to preserve non-trivial geometry we must scale W0 exponentially. The

precise scaling form to obtain the Lin-Maldacena solution is

R → ∞ d fixed W0 ∼ R−1/2d−3/2e
πR
2d . (4.16)

The gauge theory interpretation

In terms of the gauge theory parameters, we have

N → ∞ k fixed
1

g2
Y M3

λ1/4k1/2e−cλ1/2/k fixed, (4.17)

where the ’t Hooft coupling is λ = g2
Y M3N and c is a numerical coefficient related to the

constant appearing in (2.3) by c = (2π/1.99h3)
1/2. This is again a double-scaling limit in

which the ’t Hooft coupling is scaled to infinity in a controlled way. Note that the number

of NS5-branes in this case is N5 = k.

5. Discussion

We have given an explicit prescription for taking double-scaling limits of SYM theory on

R×S2 and N = 4 SYM on R×S3/Zk to obtain little string theory on S5. These limits were

obtained by using the family of supergravity solutions found by Lin and Maldacena [5].

With the similar result in [9], we have demonstrated that it is possible to take such a limit

in each of the three generic examples of this family of solutions, and in each of the three

field theories to which they are dual.

In each case, the precise form of the double-scaling limit is similar. Whereas in the

plane wave matrix model it was found the correct limit was [9]

N2 → ∞ N5 fixed N2 ∼ λ5/8eaλ1/4/N5 , (5.1)

we found above that for the SYM theory on R × S2 we have

N → ∞ n fixed N ∼ λ1/2n−1/2ebλ1/3/n , (5.2)

and for N = 4 SYM theory on R × S3/Zk we have

N → ∞ k fixed N ∼ λ3/4k−1/2ecλ1/2/k . (5.3)
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As noted in [9], it is sensible that the correct limit to obtain little string theory from

these field theories is a double-scaling limit as opposed to a strict ’t Hooft limit. If the

correct limit was the ’t Hooft limit, then it would seem strange that the field theory could

produce string loop interactions. That the ’t Hooft coupling should also be scaled to infinity

in a controlled way allows the field theory to reproduce the string genus expansion.

Suppose we consider the genus expansion for some physical observable in one of these

theories

F =
∑

g

N2−2gfg(λ, α), (5.4)

where α represents the other parameters. The double-scaling limit should be such that all

terms in this expansion contribute. For this to occur, the terms in the expansion would

have to take a particular form when λ is large. In the case of the PWMM, this form was

found to be [9]

fg(λ) → ag

(

λ5/8eaλ1/4/N5

)2g−2
, (5.5)

where the bracketed expression divided by N2 serves as the effective coupling constant.

Here we find for the SYM theory on R × S2 we must have

fg(λ) → ag

(

λ1/2ebλ1/3/n
)2g−2

, (5.6)

and for N = 4 SYM theory on R × S3/Zk

fg(λ) → ag

(

λ3/4ecλ1/2/k
)2g−2

. (5.7)

Interestingly, although these field theories live in different numbers of dimensions, it is

possible to recover little string theory from each of them by similar double-scaling limits.

Obvious difficulties arise in checking these predictions. One might hope that there are

some BPS observables for which such a check might be feasible. In the case of the circular

Wilson loop in N = 4 SYM the full set of planar diagrams can be summed [12]. The result

in that case took the form

〈

W
〉

N=∞ =

√

2

π
λ−3/4e

√
λ. (5.8)

This result has been extended to all orders in [13], where it was shown that the asymptotic

behaviour goes like e
√

λ at each order. That behaviour also arises from modified Bessel

functions. It would be interesting to calculate the circular Wilson loop in N = 4 SYM on

R × S3/Zk, and to compare it with our results here.

Other open questions remain. For example, as noted in [9], the solution for little

string theory on S5 given by Lin and Maldacena [5] is the simplest of an infinite family of

solutions that have an infinite throat with H-flux. It would be interesting to understand

if these solutions could arise from limits of more general disk configurations. It would also

be interesting to understand more about the vacua of little string theory dual to these

solutions.

– 13 –



J
H
E
P
0
2
(
2
0
0
7
)
0
3
1

Acknowledgments

We would like to thank Donovan Young for pointing out reference [13], Hai Lin for helpful

comments and especially Mark Van Raamsdonk for many helpful discussions. This work

has been supported in part by the Natural Sciences and Engineering Council of Canada

and the Killam Trusts.

References

[1] M. Berkooz, M. Rozali and N. Seiberg, Matrix description of M-theory on T 4 and T 5, Phys.

Lett. B 408 (1997) 105 [hep-th/9704089];

N. Seiberg, New theories in six dimensions and matrix description of M-theory on T 5 and

T 5/Z2, Phys. Lett. B 408 (1997) 98 [hep-th/9705221].

[2] O. Aharony, A brief review of ’little string theories’, Class. and Quant. Grav. 17 (2000) 929

[hep-th/9911147].

[3] O. Aharony and M. Berkooz, Ir dynamics of D = 2, N = (4, 4) gauge theories and DLCQ of

’little string theories’, JHEP 10 (1999) 030 [hep-th/9909101].

[4] N. Arkani-Hamed, A.G. Cohen, D.B. Kaplan, A. Karch and L. Motl, Deconstructing (2,0)

and little string theories, JHEP 01 (2003) 083 [hep-th/0110146].

[5] H. Lin and J.M. Maldacena, Fivebranes from gauge theory, Phys. Rev. D 74 (2006) 084014

[hep-th/0509235].

[6] J.M. Maldacena, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Transverse fivebranes in

matrix theory, JHEP 01 (2003) 038 [hep-th/0211139].

[7] G. Ishiki, Y. Takayama and A. Tsuchiya, N = 4 SYM on R × S3 and theories with 16

supercharges, JHEP 10 (2006) 007 [hep-th/0605163].

[8] G. Ishiki, S. Shimasaki, Y. Takayama and A. Tsuchiya, Embedding of theories with SU(2|4)
symmetry into the plane wave matrix model, JHEP 11 (2006) 089 [hep-th/0610038].

[9] H. Ling, A.R. Mohazab, H.-H. Shieh, G. van Anders and M. Van Raamsdonk, Little string

theory from a double-scaled matrix model, JHEP 10 (2006) 018 [hep-th/0606014].

[10] I.N. Sneddon, Mixed boundary value problems in potential theory, Amsterdam,

North-Holland, 1966.

[11] L.M. Delves and J.L. Mohamed, Computational methods for integral equations, Cambridge,

1985.

[12] J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric

Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055].

[13] N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory,

J. Math. Phys. 42 (2001) 2896 [hep-th/0010274].

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB408%2C105
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB408%2C105
http://arxiv.org/abs/hep-th/9704089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB408%2C98
http://arxiv.org/abs/hep-th/9705221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2C929
http://arxiv.org/abs/hep-th/9911147
http://jhep.sissa.it/stdsearch?paper=10%281999%29030
http://arxiv.org/abs/hep-th/9909101
http://jhep.sissa.it/stdsearch?paper=01%282003%29083
http://arxiv.org/abs/hep-th/0110146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C084014
http://arxiv.org/abs/hep-th/0509235
http://jhep.sissa.it/stdsearch?paper=01%282003%29038
http://arxiv.org/abs/hep-th/0211139
http://jhep.sissa.it/stdsearch?paper=10%282006%29007
http://arxiv.org/abs/hep-th/0605163
http://jhep.sissa.it/stdsearch?paper=11%282006%29089
http://arxiv.org/abs/hep-th/0610038
http://jhep.sissa.it/stdsearch?paper=10%282006%29018
http://arxiv.org/abs/hep-th/0606014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB582%2C155
http://arxiv.org/abs/hep-th/0003055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C42%2C2896
http://arxiv.org/abs/hep-th/0010274

